A distinct effect of transient and sustained upregulation of cellular factor XIII in the goldfish retina and optic nerve on optic nerve regeneration.

نویسندگان

  • Kayo Sugitani
  • Kazuhiro Ogai
  • Kiyotaka Hitomi
  • Kayo Nakamura-Yonehara
  • Takafumi Shintani
  • Masaharu Noda
  • Yoshiki Koriyama
  • Hideji Tanii
  • Toru Matsukawa
  • Satoru Kato
چکیده

Unlike in mammals, fish retinal ganglion cells (RGCs) have a capacity to repair their axons even after optic nerve transection. In our previous study, we isolated a tissue type transglutaminase (TG) from axotomized goldfish retina. The levels of retinal TG (TG(R)) mRNA increased in RGCs 1-6weeks after nerve injury to promote optic nerve regeneration both in vitro and in vivo. In the present study, we screened other types of TG using specific FITC-labeled substrate peptides to elucidate the implications for optic nerve regeneration. This screening showed that the activity of only cellular coagulation factor XIII (cFXIII) was increased in goldfish optic nerves just after nerve injury. We therefore cloned a full-length cDNA clone of FXIII A subunit (FXIII-A) and studied temporal changes of FXIII-A expression in goldfish optic nerve and retina during regeneration. FXIII-A mRNA was initially detected at the crush site of the optic nerve 1h after injury; it was further observed in the optic nerve and achieved sustained long-term expression (1-40days after nerve injury). The cells producing FXIII-A were astrocytes/microglial cells in the optic nerve. By contrast, the expression of FXIII-A mRNA and protein was upregulated in RGCs for a shorter time (3-10days after nerve injury). Overexpression of FXIII-A in RGCs achieved by lipofection induced significant neurite outgrowth from unprimed retina, but not from primed retina with pretreatment of nerve injury. Addition of extracts of optic nerves with injury induced significant neurite outgrowth from primed retina, but not from unprimed retina without pretreatment of nerve injury. The transient increase of cFXIII in RGCs promotes neurite sprouting from injured RGCs, whereas the sustained increase of cFXIII in optic nerves facilitates neurite elongation from regrowing axons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration.

Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the R...

متن کامل

Reciprocal changes in factor XIII and retinal transglutaminase expressions in the fish retina during optic nerve regeneration.

Unlike mammals, fish retinal ganglion cells have the capacity to repair their axons even after optic nerve transection. In the process of fish optic nerve regeneration, a large number of genes have been described as regeneration-associated molecules. Using molecular cloning techniques, we identified two types of cDNA clones belonging to the transglutaminase (TG) family which were upregulation g...

متن کامل

Growth and myelination of goldfish optic nerve fibers after retina regeneration and nerve crush.

Axonal regeneration in the optic nerve and tectum of the goldfish was studied both after retina regeneration and nerve crush. The retina regeneration was evoked by ouabain-induced damage of at least the ganglion cells and cells of the inner nuclear layer. The necrotic retinal neurons are substituted by mitotic processes in the outer nuclear layer and the marginal growth zone at the ora serrata....

متن کامل

Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration.

Fish CNS neurons can repair their axons following nerve injury, whereas mammalian CNS neurons cannot regenerate, and become apoptotic within 1-2 weeks after the nerve lesion. One explanation for these differences is that one, or several molecules are upregulated in fish CNS neurons during nerve regeneration, and this same molecule is downregulated in mammalian CNS neurons before the development...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurochemistry international

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2012